Matrix exponential

From specialfunctionswiki
Jump to: navigation, search

The $n$-dimensional matrix exponential $\exp_n \colon \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ is defined by $$\exp_n(X)=\displaystyle\sum_{k=0}^{\infty} \dfrac{X^k}{k!}.$$

Properties

Matrix e^A=limit of (I+A/s)^s

References

  • 2008: {{ #if: |{{{2}}}|Nicholas Higham}}{{#if: |{{#if: |, [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]{{#if: |, [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]{{#if: |, [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]}}| and [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]}}| and [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]}}|}}: [[Book:Nicholas Higham/Functions of Matrices: Theory and Computation{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|Functions of Matrices: Theory and Computation{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}}|{{#if: | ({{{ed}}} ed.)}}}}]]{{#if: | (translated by [[Mathematician:{{{translated}}}|{{ #if: |{{{2}}}|{{{translated}}}}}]])}}{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: findme | ... (previous)|}}{{#if: Matrix e^A=limit of (I+A/s)^s | ... (next)|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}}: $(10.1)$