Modified Bessel K
From specialfunctionswiki
(Redirected from Modified Bessel K sub nu)
The modified Bessel function of the second kind is defined by $$K_{\nu}(z)=\dfrac{\pi}{2} \dfrac{I_{-\nu}(z)-I_{\nu}(z)}{\sin(\nu \pi)},$$ where $I_{\nu}$ is the modified Bessel function of the first kind.
- Error creating thumbnail: Unable to save thumbnail to destination
Graph of $K_0$.
- Error creating thumbnail: Unable to save thumbnail to destination
Graphs of $K_0$, $K_1$, $K_2$, and $K_3$.
- Error creating thumbnail: Unable to save thumbnail to destination
Domain coloring of $K_1$.
- Error creating thumbnail: Unable to save thumbnail to destination
Modified Bessel functions from Abramowitz&Stegun.
Properties
Relationship between Airy Ai and modified Bessel K
References
Modified Bessel $K_{\nu}$