Narumi polynomials
From specialfunctionswiki
The Narumi polynomials $s_n(x)$ are given by $$\left( \dfrac{t}{\log(1+t)} \right)^a (1+t)^x = \displaystyle\sum_{k=0}^{\infty} s_k(x) \dfrac{t^k}{k!}.$$
The Narumi polynomials $s_n(x)$ are given by $$\left( \dfrac{t}{\log(1+t)} \right)^a (1+t)^x = \displaystyle\sum_{k=0}^{\infty} s_k(x) \dfrac{t^k}{k!}.$$