Norton's constant
From specialfunctionswiki
Norton's constant $B$ is given by $$B=\dfrac{12 \log(2)}{\pi^2} \left[ -\dfrac{1}{2} + \dfrac{6}{\pi^2}\zeta'(2) \right]+C-\dfrac{1}{2},$$ where $\log$ denotes the logarithm, $\pi$ denotes pi, $\zeta$ denotes the Riemann zeta function, and $C$ denotes Porter's constant.