Orthogonality of Chebyshev T on (-1,1)
From specialfunctionswiki
Theorem
The following formula holds for $m,n \in \{0,1,2,\ldots\}$: $$\int_{-1}^1 \dfrac{T_m(x)T_n(x)}{\sqrt{1-x^2}} \mathrm{d}x = \left\{ \begin{array}{ll} 0 &; m \neq n \\ \dfrac{\pi}{2} &; m=n\neq 0 \\ \pi &; m=n=0, \end{array} \right.$$ where $T_m$ denotes Chebyshev polynomials of the first kind.
Proof
References
- 1978: T.S. Chihara: An Introduction to Orthogonal Polynomials ... (previous) ... (next) $(1.3)$ (note: only mentions the $m \neq n$ case)