Pythagorean identity for coth and csch

From specialfunctionswiki
Jump to: navigation, search

Theorem

The following formula holds: $$\mathrm{coth}^2(z)-\mathrm{csch}^2(z)=1,$$ where $\mathrm{coth}$ denotes hyperbolic cotangent and $\mathrm{csch}$ denotes hyperbolic cosecant.

Proof

References