Pythagorean identity for tanh and sech

From specialfunctionswiki
Jump to: navigation, search

Theorem

The following formula holds: $$\mathrm{tanh}^2(z)+\mathrm{sech}^2(z)=1,$$ where $\mathrm{tanh}$ denotes the hyperbolic tangent and $\mathrm{sech}$ denotes the hyperbolic secant.

Proof

References