Q-Fibonacci polynomials
From specialfunctionswiki
The $q$-Fibonacci polynomials are defined by $$F_n(x,s,q) = \left\{ \begin{array}{ll} 0 &; n=0 \\ 1 &; n=1 \\ xF_{n-1}(x,s,q)+t(q^{n-2}s)F_{n-2}(x,s,q), \end{array} \right.$$ where $t(\xi) \neq 0$ is a function of a (real) variable $s$ and $q \neq 0$ is a real number.
Properties
Theorem: ($q$-Euler-Cassini formula) The $q$-Fibonacci polynomials satisfy the polynomial identity $$F_{n-1}(x,qs,q)F_{n+k}(x,s,q)-F_n(x,s,q)F_{n+k-1}(x,qs,q) = (-1)^nt(qs) \ldots t(q^{n-1}s)F_k(x,q^ns,q).$$
Proof: █
References
- {{ #if: |{{{2}}}|Johann Cigler}}{{#if: |{{#if: |, [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]{{#if: |, [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]{{#if: |, [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]}}| and [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]}}| and [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]}}|}}: [[Paper:Johann Cigler/q-Fibonacci Polynomials{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|q-Fibonacci Polynomials{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}} (2001)| ({{#if: |{{{ed}}} ed., }}2001)}}]]{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: | ... [[{{{prev}}}|(previous)]]|}}{{#if: | ... [[{{{next}}}|(next)]]|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}}