Q-derivative of q-Sine

From specialfunctionswiki
Jump to: navigation, search

Theorem

The following formula holds: $$D_q \mathrm{Sin}_q(bz) = b \mathrm{Cos}_q(bz),$$ where $D_q$ is the q-derivative, $\mathrm{Sin}_q$ is the $q$-Sine function, and $\mathrm{Cos}_q$ is the $q$-cosine function.

Proof

References

  • 2012: {{ #if: |{{{2}}}|Thomas Ernst}}{{#if: |{{#if: |, [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]{{#if: |, [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]{{#if: |, [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]}}| and [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]}}| and [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]}}|}}: [[Book:Thomas Ernst/A Comprehensive Treatment of q-Calculus{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|A Comprehensive Treatment of q-Calculus{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}}|{{#if: | ({{{ed}}} ed.)}}}}]]{{#if: | (translated by [[Mathematician:{{{translated}}}|{{ #if: |{{{2}}}|{{{translated}}}}}]])}}{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: q-Cos | ... (previous)|}}{{#if: q-derivative of q-Cosine | ... (next)|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}}: (6.170)