Q-exponential E sub 1/q

From specialfunctionswiki
Jump to: navigation, search

The $E_{\frac{1}{q}}$ function is defined by the formula $$E_{\frac{1}{q}}(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{q^{\frac{k(k-1)}{2} }}{[k]_q!} z^k.$$

Properties

q-exponential E sub q in terms of binomial coefficient
Q-difference equation for q-exponential E sub 1/q

See Also

Q-exponential E sub q

References

  • 2002: {{ #if: |{{{2}}}|Victor Kac}}{{#if: Pokman Cheung|{{#if: |, {{ #if: |{{{2}}}|Pokman Cheung}}{{#if: |, [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]{{#if: |, [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]}}| and [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]}}| and {{ #if: |{{{2}}}|Pokman Cheung}}}}|}}: [[Book:Victor Kac/Quantum Calculus{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|Quantum Calculus{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}}|{{#if: | ({{{ed}}} ed.)}}}}]]{{#if: | (translated by [[Mathematician:{{{translated}}}|{{ #if: |{{{2}}}|{{{translated}}}}}]])}}{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: findme | ... (previous)|}}{{#if: findme | ... (next)|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}} $(9.10)$ (calls $E_{\frac{1}{q}}(x)$ $E_q^x$)
  • 2012: {{ #if: |{{{2}}}|Thomas Ernst}}{{#if: |{{#if: |, [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]{{#if: |, [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]{{#if: |, [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]}}| and [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]}}| and [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]}}|}}: [[Book:Thomas Ernst/A Comprehensive Treatment of q-Calculus{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|A Comprehensive Treatment of q-Calculus{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}}|{{#if: | ({{{ed}}} ed.)}}}}]]{{#if: | (translated by [[Mathematician:{{{translated}}}|{{ #if: |{{{2}}}|{{{translated}}}}}]])}}{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: Q-difference equation for q-exponential E sub q | ... (previous)|}}{{#if: Q-difference equation for q-exponential E sub 1/q | ... (next)|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}}: ($6.153$)