Q-exponential e sub q

From specialfunctionswiki
(Redirected from Q-exponential e)
Jump to: navigation, search

The $q$-exponential $e_q$ is defined for $|z|<1$ by the formula $$e_q(z) =\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{(q;q)_k},$$ where $(q;q)_k$ denotes the q-shifted factorial. Note that this function is different than the $q$-exponential $e_{\frac{1}{q}}$.

Properties

Exponential e in terms of basic hypergeometric phi

Q-Euler formula for e sub q

References

  • {{ #if: |{{{2}}}|Tom H. Koornwinder}}{{#if: |{{#if: |, [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]{{#if: |, [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]{{#if: |, [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]}}| and [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]}}| and [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]}}|}}: [[Paper:Tom H. Koornwinder/q-Special functions, a tutorial{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|q-Special functions, a tutorial{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}} (1994)| ({{#if: |{{{ed}}} ed., }}1994)}}]]{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: findme | ... (previous)|}}{{#if: findme | ... (next)|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}}