Reciprocal Fibonacci constant
From specialfunctionswiki
The reciprocal Fibonacci constant $\psi$ is $$\psi = \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{F(k)}=3.35988566624317755\ldots,$$ where $F(k)$ is is the $k$th Fibonacci number.
Properties
The reciprocal Fibonacci constant is irrational
See also
Fibonacci numbers
Fibonacci zeta function
References
- {{ #if: |{{{2}}}|Edmund Landau}}{{#if: |{{#if: |, [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]{{#if: |, [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]{{#if: |, [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]}}| and [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]}}| and [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]}}|}}: [[Paper:Edmund Landau/Sur la série des inverse de nombres de Fibonacci{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|Sur la série des inverse de nombres de Fibonacci{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}} (1899)| ({{#if: |{{{ed}}} ed., }}1899)}}]]{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: Limit of quotient of consecutive Fibonacci numbers | ... (previous)|}}{{#if: findme | ... (next)|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}}