Pure recurrence relation for partition function
From specialfunctionswiki
(Redirected from Recurrence relation for partition function)
Theorem
The following formula holds: $$p(n)=\displaystyle\sum_{1 \leq \frac{3k^3 \pm k}{2} \leq n} (-1)^{k-1} p \left( n - \dfrac{3k^2 \pm k}{2} \right),$$ where $p(n)$ denotes the partition function and $\sigma_1$ denotes the sum of divisors function.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $24.2.1 \mathrm{II}.A.$