Riemann-Landau xi
From specialfunctionswiki
The Riemann-Landau $\Xi$ function is defined by $$\Xi(z) = \xi \left( \dfrac{1}{2} + iz \right),$$ where $\xi$ denotes Riemann xi.
Properties
References
- 1930: Edward Charles Titchmarsh: The Zeta-Function of Riemann ... (previous) ... (next): § Introduction, pg. 3