Riemann-Siegel Z
From specialfunctionswiki
The Riemann-Siegel $Z$ function is defined by $$Z(t)=e^{i\theta(t)}\zeta \left( \dfrac{1}{2}+it \right),$$ where $\theta$ denotes the Riemann-Siegel theta function and $\zeta$ denotes the Riemann zeta function.
- Error creating thumbnail: Unable to save thumbnail to destination
Graph of $Z(t)$ on $[-20,20]$.
- Error creating thumbnail: Unable to save thumbnail to destination
Domain coloring of analytic continuation of $Z(t)$.