Riemann xi

From specialfunctionswiki
(Redirected from Riemann xi function)
Jump to: navigation, search

The Riemann $\xi$ function is defined by the formula $$\xi(z)=\dfrac{z}{2}(z-1)\pi^{-\frac{z}{2}}\Gamma\left(\dfrac{z}{2}\right)\zeta(z),$$ where $\pi$ denotes pi, $\Gamma$ denotes gamma, and $\zeta$ denotes Riemann zeta.

Properties

Functional equation for Riemann xi

References