Schwarz function
From specialfunctionswiki
Define $\varphi(x)=\lfloor x \rfloor + \sqrt{x-\lfloor x \rfloor}$, where $\lfloor \cdot \rfloor$ denotes the floor function and let $M>0$. The Schwarz function $S \colon (0,M) \rightarrow \mathbb{R}$ is defined by $$S(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{\varphi(2^k x)}{4^k}.$$
Properties
Schwarz function is continuous
Schwarz function is nowhere differentiable on a dense subset
References
- 2003: {{ #if: |{{{2}}}|Johan Thim}}{{#if: |{{#if: |, [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]{{#if: |, [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]{{#if: |, [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]}}| and [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]}}| and [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]}}|}}: [[Book:Johan Thim/Continuous Nowhere Differentiable Functions{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|Continuous Nowhere Differentiable Functions{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}}|{{#if: | ({{{ed}}} ed.)}}}}]]{{#if: | (translated by [[Mathematician:{{{translated}}}|{{ #if: |{{{2}}}|{{{translated}}}}}]])}}{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: Darboux function | ... (previous)|}}{{#if: findme | ... (next)|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}} $\S 3.5$, pg. 28