Secant zeta function
From specialfunctionswiki
The secant zeta functions $\psi_s$ are defined by $$\psi_s(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{\sec(\pi n z)}{n^s}$$
Properties
Absolute convergence of secant zeta function
References
- {{ #if: |{{{2}}}|Matilde Lalín}}{{#if: |{{#if: |, [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]{{#if: |, [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]{{#if: |, [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]}}| and [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]}}| and [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]}}|}}: [[Paper:Matilde Lalín/Secant zeta functions{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|Secant zeta functions{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}} (2014)| ({{#if: |{{{ed}}} ed., }}2014)}}]]{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: | ... [[{{{prev}}}|(previous)]]|}}{{#if: | ... [[{{{next}}}|(next)]]|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}}