Series for q-sin sub q
From specialfunctionswiki
Theorem
The following formula holds for $|z|<1$: $$\sin_q(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k z^{2k+1}}{\langle 1;q \rangle_{2k+1}},$$ where $\sin_q$ denotes the $\sin_q$ function.
Proof
References
- 2012: {{ #if: |{{{2}}}|Thomas Ernst}}{{#if: |{{#if: |, [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]{{#if: |, [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]{{#if: |, [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]}}| and [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]}}| and [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]}}|}}: [[Book:Thomas Ernst/A Comprehensive Treatment of q-Calculus{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|A Comprehensive Treatment of q-Calculus{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}}|{{#if: | ({{{ed}}} ed.)}}}}]]{{#if: | (translated by [[Mathematician:{{{translated}}}|{{ #if: |{{{2}}}|{{{translated}}}}}]])}}{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: q-sin sub q | ... (previous)|}}{{#if: q-cos sub q | ... (next)|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}}: $(6.201)$