Struve function
The Struve functions are defined by $$\mathbf{H}_{\nu}(z)=\left(\dfrac{z}{2}\right)^{\nu+1} \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k\left(\frac{z}{2}\right)^{2k}}{\Gamma(k+\frac{3}{2})\Gamma \left(k+\nu+\frac{3}{2} \right)}.$$
Properties
Relationship between Struve function and hypergeometric pFq
Relationship between Weber function 0 and Struve function 0
Relationship between Weber function 1 and Struve function 1
Integral representation of Struve function
Integral representation of Struve function (2)
Integral representation of Struve function (3)
Recurrence relation for Struve fuction
Recurrence relation for Struve function (2)
Derivative of Struve H0
D/dz(z^(nu)H (nu))=z^(nu)H (nu-1)
D/dz(z^(-nu)H (nu))=1/(sqrt(pi)2^(nu)Gamma(nu+3/2))-z^(-nu)H (nu+1)
H (nu)(x) geq 0 for x gt 0 and nu geq 1/2
H (-(n+1/2))(z)=(-1)^n J (n+1/2)(z) for integer n geq 0
H (1/2)(z)=sqrt(2/(pi z))(1-cos(z))
H (3/2)(z)=sqrt(z/(2pi))(1+2/z^2)-sqrt(2/(pi z))(sin(z)+cos(z)/z)
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $12.1.3$