Struve function
The Struve functions are defined by $$\mathbf{H}_{\nu}(z)=\left(\dfrac{z}{2}\right)^{\nu+1} \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k\left(\frac{z}{2}\right)^{2k}}{\Gamma(k+\frac{3}{2})\Gamma \left(k+\nu+\frac{3}{2} \right)}.$$
- Error creating thumbnail: Unable to save thumbnail to destination
Struve $\mathbf{H}_0$.
- Error creating thumbnail: Unable to save thumbnail to destination
Various Struve functions.
- Error creating thumbnail: Unable to save thumbnail to destination
Struve functions from Abramowitz&Stegun.
Properties
Relationship between Struve function and hypergeometric pFq
Relationship between Weber function 0 and Struve function 0
Relationship between Weber function 1 and Struve function 1
Integral representation of Struve function
Integral representation of Struve function (2)
Integral representation of Struve function (3)
Recurrence relation for Struve fuction
Recurrence relation for Struve function (2)
Derivative of Struve H0
D/dz(z^(nu)H (nu))=z^(nu)H (nu-1)
D/dz(z^(-nu)H (nu))=1/(sqrt(pi)2^(nu)Gamma(nu+3/2))-z^(-nu)H (nu+1)
H (nu)(x) geq 0 for x gt 0 and nu geq 1/2
H (-(n+1/2))(z)=(-1)^n J (n+1/2)(z) for integer n geq 0
H (1/2)(z)=sqrt(2/(pi z))(1-cos(z))
H (3/2)(z)=sqrt(z/(2pi))(1+2/z^2)-sqrt(2/(pi z))(sin(z)+cos(z)/z)
References
- 1964: {{ #if: |{{{2}}}|Milton Abramowitz}}{{#if: Irene A. Stegun|{{#if: |, {{ #if: |{{{2}}}|Irene A. Stegun}}{{#if: |, [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]{{#if: |, [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]}}| and [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]}}| and {{ #if: |{{{2}}}|Irene A. Stegun}}}}|}}: [[Book:Milton Abramowitz/Handbook of mathematical functions{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|Handbook of mathematical functions{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}}|{{#if: | ({{{ed}}} ed.)}}}}]]{{#if: | (translated by [[Mathematician:{{{translated}}}|{{ #if: |{{{2}}}|{{{translated}}}}}]])}}{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: findme | ... (previous)|}}{{#if: Struve H0 | ... (next)|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}}: $12.1.3$