Van der Waerden function
From specialfunctionswiki
The van der Waerden function $V \colon \mathbb{R} \rightarrow \mathbb{R}$ is defined by the formula $$V(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{\mathrm{dist}_{\mathbb{Z}} \left(10^k x \right)}{10^k},$$ where $\mathrm{dist}_{\mathbb{Z}}$ denotes the distance to integers function.
- Error creating thumbnail: Unable to save thumbnail to destination
Plot of the van der Waerden function.
Properties
van der Waerden function is continuous
van der Waerden function is nowhere differentiable
See Also
References
van der Waerden