Difference between revisions of "E"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
$$y'=y;y(0)=1,$$
 
$$y'=y;y(0)=1,$$
 
then $e=f(1)$.
 
then $e=f(1)$.
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> The real number $e$ is [[irrational]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> proof goes here █
 +
</div>
 +
</div>
  
 
=References=
 
=References=
 
[http://eulerarchive.maa.org/hedi/HEDI-2006-02.pdf Who proved $e$ is irrational?]
 
[http://eulerarchive.maa.org/hedi/HEDI-2006-02.pdf Who proved $e$ is irrational?]

Revision as of 02:29, 3 October 2014

The number $e$ can be defined in the following way: let $f$ be the unique solution of the initial value problem $$y'=y;y(0)=1,$$ then $e=f(1)$.

Properties

Theorem: The real number $e$ is irrational.

Proof: proof goes here █

References

Who proved $e$ is irrational?