Difference between revisions of "Pi"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "=References= [http://math.stackexchange.com/questions/3198/proof-that-pi-is-constant-the-same-for-all-circles-without-using-limits Proof that $\pi$ is constant for all circles...")
 
Line 1: Line 1:
 +
A circle in Euclidean plane geometry is defined to be the set of points equidistant from a center point. The length around a circle is called its circumference and the length a line from the circle through the center is called a diameter of the circle. All diameters have the same length by definition of the circle. Let $A$ be a circle. The number $\pi$ is defined to be the ratio $\dfrac{C}{D}$ where $C$ is the circumference of $A$ and $D$ the diameter of $A$. It requires proof to show that the value obtained from the circle $A$, call this $\pi_A$, is the same number one obtains from another circle $B$, the value $\pi_B$.
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> The value of $\pi$ is independent of which circle it is defined for.
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 
=References=
 
=References=
[http://math.stackexchange.com/questions/3198/proof-that-pi-is-constant-the-same-for-all-circles-without-using-limits Proof that $\pi$ is constant for all circles without using limits]
+
[http://math.stackexchange.com/questions/3198/proof-that-pi-is-constant-the-same-for-all-circles-without-using-limits Proof that $\pi$ is constant for all circles without using limits]<br />
 +
 
 
[http://www.oocities.org/cf/ilanpi/pi-exists.html Proof that $\pi$ exists]
 
[http://www.oocities.org/cf/ilanpi/pi-exists.html Proof that $\pi$ exists]

Revision as of 15:45, 4 October 2014

A circle in Euclidean plane geometry is defined to be the set of points equidistant from a center point. The length around a circle is called its circumference and the length a line from the circle through the center is called a diameter of the circle. All diameters have the same length by definition of the circle. Let $A$ be a circle. The number $\pi$ is defined to be the ratio $\dfrac{C}{D}$ where $C$ is the circumference of $A$ and $D$ the diameter of $A$. It requires proof to show that the value obtained from the circle $A$, call this $\pi_A$, is the same number one obtains from another circle $B$, the value $\pi_B$.

Properties

Theorem: The value of $\pi$ is independent of which circle it is defined for.

Proof:

References

Proof that $\pi$ is constant for all circles without using limits

Proof that $\pi$ exists