Difference between revisions of "Dedekind eta"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
Let $q=e^{2\pi i \tau}$. We define the Dedekind eta function by the formula
 
Let $q=e^{2\pi i \tau}$. We define the Dedekind eta function by the formula
 
$$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$
 
$$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$
 +
 +
=References=
 +
[http://eta.math.georgetown.edu/ A collection of over 6200 identities for the Dedekind Eta Function]

Revision as of 04:59, 15 October 2014

Let $q=e^{2\pi i \tau}$. We define the Dedekind eta function by the formula $$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$

References

A collection of over 6200 identities for the Dedekind Eta Function