Difference between revisions of "Beta"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
$$B(x,y)=\displaystyle\int_0^1 t^{x-1}(1-t)^{y-1}dt$$
+
The $\beta$ function is defined by the formula
 
+
$$B(x,y)=\displaystyle\int_0^1 t^{x-1}(1-t)^{y-1}dt.$$
 
[[File:Beta2.png|500px]]
 
[[File:Beta2.png|500px]]
  
Line 7: Line 7:
 
=Properties=
 
=Properties=
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>Theorem:</strong> $B(x,y)=\dfrac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$  
+
<strong>Theorem:</strong> The following formula holds:
 +
$$B(x,y)=\dfrac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)},$$
 +
where $\Gamma$ denotes the [[gamma function]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  

Revision as of 00:03, 19 October 2014

The $\beta$ function is defined by the formula $$B(x,y)=\displaystyle\int_0^1 t^{x-1}(1-t)^{y-1}dt.$$ Beta2.png

Beta.png

Properties

Theorem: The following formula holds: $$B(x,y)=\dfrac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)},$$ where $\Gamma$ denotes the gamma function.

Proof:

Theorem: $B(x,y)=B(y,x)$

Proof:

Theorem: (i) $B(x+1,y)=\dfrac{x}{x+y} B(x,y)$
(ii) $B(x,y+1)=\dfrac{y}{x+y}B(x,y)$

Proof:

References

Bell. Special Functions