Difference between revisions of "Dedekind eta"
From specialfunctionswiki
Line 1: | Line 1: | ||
Let $q=e^{2\pi i \tau}$. We define the Dedekind eta function by the formula | Let $q=e^{2\pi i \tau}$. We define the Dedekind eta function by the formula | ||
$$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$ | $$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$ | ||
+ | |||
+ | [[File:DedekindetaRe.png|500px]] | ||
+ | |||
+ | [[File:DedekindetaIm.png|500px]] | ||
=References= | =References= | ||
[http://eta.math.georgetown.edu/ A collection of over 6200 identities for the Dedekind Eta Function] | [http://eta.math.georgetown.edu/ A collection of over 6200 identities for the Dedekind Eta Function] |
Revision as of 00:46, 19 October 2014
Let $q=e^{2\pi i \tau}$. We define the Dedekind eta function by the formula $$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$
References
A collection of over 6200 identities for the Dedekind Eta Function