Difference between revisions of "Dedekind eta"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
Let $q=e^{2\pi i \tau}$. We define the Dedekind eta function by the formula
 
Let $q=e^{2\pi i \tau}$. We define the Dedekind eta function by the formula
 
$$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$
 
$$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$
 +
 +
[[File:DedekindetaRe.png|500px]]
 +
 +
[[File:DedekindetaIm.png|500px]]
  
 
=References=
 
=References=
 
[http://eta.math.georgetown.edu/ A collection of over 6200 identities for the Dedekind Eta Function]
 
[http://eta.math.georgetown.edu/ A collection of over 6200 identities for the Dedekind Eta Function]

Revision as of 00:46, 19 October 2014

Let $q=e^{2\pi i \tau}$. We define the Dedekind eta function by the formula $$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$

DedekindetaRe.png

DedekindetaIm.png

References

A collection of over 6200 identities for the Dedekind Eta Function