Difference between revisions of "Q-theta function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "For $0 \leq |q| < 1$, $$\theta(z;q)=\prod_{k=0}^{\infty} (1-q^kz) \left(1-\dfrac{q^{k+1}}{z} \right)=(z;q)_{\infty}(\frac{q}{z};q)_{\infty},$$ where $(a,b)_{\infty}$ is the...")
 
 
Line 1: Line 1:
 
For $0 \leq |q|  < 1$,  
 
For $0 \leq |q|  < 1$,  
$$\theta(z;q)=\prod_{k=0}^{\infty} (1-q^kz) \left(1-\dfrac{q^{k+1}}{z} \right)=(z;q)_{\infty}(\frac{q}{z};q)_{\infty},$$
+
$$\theta(z;q)=\prod_{k=0}^{\infty} (1-q^kz) \left(1-\dfrac{q^{k+1}}{z} \right)=(z;q)_{\infty}\left(\frac{q}{z};q \right)_{\infty},$$
 
where $(a,b)_{\infty}$ is the [[q-Pochhammer symbol | $q$-Pochhammer symbol]].
 
where $(a,b)_{\infty}$ is the [[q-Pochhammer symbol | $q$-Pochhammer symbol]].

Latest revision as of 00:56, 19 October 2014

For $0 \leq |q| < 1$, $$\theta(z;q)=\prod_{k=0}^{\infty} (1-q^kz) \left(1-\dfrac{q^{k+1}}{z} \right)=(z;q)_{\infty}\left(\frac{q}{z};q \right)_{\infty},$$ where $(a,b)_{\infty}$ is the $q$-Pochhammer symbol.