Difference between revisions of "Polylogarithm"
From specialfunctionswiki
m (Tom moved page Polylogarithms to Polylogarithm) |
|||
Line 1: | Line 1: | ||
− | $$\mathrm{Li}_s(z)= | + | The polylogarithm $\mathrm{Li}_s$ is defined by the formula |
+ | $$\mathrm{Li}_s(z) = \sum_{k=1}^{\infty} \dfrac{z^k}{k^s} = z + \dfrac{z^2}{2^s} + \dfrac{z^3}{3^s} + \ldots$$ | ||
+ | |||
+ | [[File:Polylog.png|500px]] |
Revision as of 01:10, 19 October 2014
The polylogarithm $\mathrm{Li}_s$ is defined by the formula $$\mathrm{Li}_s(z) = \sum_{k=1}^{\infty} \dfrac{z^k}{k^s} = z + \dfrac{z^2}{2^s} + \dfrac{z^3}{3^s} + \ldots$$