Difference between revisions of "Arccos"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
  
 
[[File:Arccos.png|500px]]
 
[[File:Arccos.png|500px]]
 +
 +
[[File:Complex arccos.jpg|500px]]
  
 
=Properties=
 
=Properties=

Revision as of 04:57, 19 October 2014

The $\mathrm{arccos}$ function is the inverse function of the cosine function.

Arccos.png

Complex arccos.jpg

Properties

Proposition: $$\dfrac{d}{dz} \mathrm{arccos}(z) = -\dfrac{1}{\sqrt{1-z^2}}$$

Proof:

Proposition: $$\int \mathrm{arccos}(z) dz = z\mathrm{arccos}(z)-\sqrt{1-z^2}+C$$

Proof:

Proposition: $$\mathrm{arccos}(z)=\mathrm{arcsec} \left( \dfrac{1}{z} \right)$$

Proof:

References

Weisstein, Eric W. "Inverse Cosine." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/InverseCosine.html