Difference between revisions of "Associated Laguerre L"
(→Properties) |
(→Properties) |
||
Line 46: | Line 46: | ||
<strong>Theorem:</strong> The following formula holds: | <strong>Theorem:</strong> The following formula holds: | ||
$$xL_n^{(\alpha+1)}(x)= (n+\alpha)L_{n-1}^{(\alpha)}(x)-(n-x)L_n^{(\alpha)}(x).$$ | $$xL_n^{(\alpha+1)}(x)= (n+\alpha)L_{n-1}^{(\alpha)}(x)-(n-x)L_n^{(\alpha)}(x).$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
+ | <strong>Theorem:</strong> The following formula holds: | ||
+ | $$\dfrac{d^k}{dx^k} L_n^{(\alpha)}(x) = (-1)^kL_{n-k}^{(\alpha+k)}(x).$$ | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 15:25, 24 October 2014
Let $\alpha \in \mathbb{R}$. The associated Laguerre polynomials, $L_n^{(\alpha)}(x)$ are solutions of the differential equation $$x\dfrac{d^2y}{dx^2} + (1-x)\dfrac{dy}{dx} + ny=0.$$
The first few Laguerre polynomials are given by $$\begin{array}{ll} L_0^{(\alpha)}(x) &= 1 \\ L_1^{(\alpha)}(x) &= -x+\alpha+1 \\ L_2^{(\alpha)}(x) &= \dfrac{x^2}{2} -(\alpha+2)x+\dfrac{(\alpha+2)(\alpha+1)}{2} \\ L_3^{(\alpha)}(x) &= -\dfrac{x^3}{6} + \dfrac{(\alpha+3)x^2}{2} - \dfrac{(\alpha+2)(\alpha+3)x}{2} + \dfrac{(\alpha+1)(\alpha+2)(\alpha+3)}{6} \\ \vdots \end{array}$$
Properties
Theorem: The following formula holds: $$L_n^{(\alpha)}(x) = \displaystyle\sum_{k=0}^n (-1)^k {n+\alpha \choose n-k} \dfrac{x^k}{k!}.$$
Proof: █
Theorem: The following formula holds: $$L_n^{(\alpha+\beta+1)}(x+y) = \displaystyle\sum_{k=0}^n L_k^{(\alpha)}(x)L_{n-k}^{(\beta)}(x).$$
Proof: █
Theorem: The following formula holds: $$L_n^{(\alpha)}(x) = L_n^{(\alpha+1)}(x)-L_{n-1}^{(\alpha+1)}(x).$$
Proof: █
Theorem: The following formula holds: $$nL_n^{(\alpha+1)}(x) = (n-x)L_{n-1}^{(\alpha+1)}(x)-(n+\alpha)L_{n-1}^{(\alpha)}(x).$$
Proof: █
Theorem: The following formula holds: $$xL_n^{(\alpha+1)}(x)= (n+\alpha)L_{n-1}^{(\alpha)}(x)-(n-x)L_n^{(\alpha)}(x).$$
Proof: █
Theorem: The following formula holds: $$\dfrac{d^k}{dx^k} L_n^{(\alpha)}(x) = (-1)^kL_{n-k}^{(\alpha+k)}(x).$$
Proof: █