Difference between revisions of "Arcsin"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 9: Line 9:
 
$$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{1-z^2}$$
 
$$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{1-z^2}$$
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
<strong>Proof:</strong> █  
+
<strong>Proof:</strong> If $y=\mathrm{arcsin}(z)$ then $\sin(y)=z$. Now use [[implicit differentiation]] with respect to $z$ to get
 +
$$\cos(y)y'=1.$$
 +
Substitution back in $y=\mathrm{arcsin(z)}$ yields the formula
 +
$$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{\cos(\mathrm{arcsin(z)})} = \dfrac{1}{\sqrt{1-z^2}}. $$ 
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 01:46, 28 October 2014

The $\mathrm{arcsin}$ function is the inverse function of the sine function.
500px

500px

Properties

Proposition: $$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{1-z^2}$$

Proof: If $y=\mathrm{arcsin}(z)$ then $\sin(y)=z$. Now use implicit differentiation with respect to $z$ to get $$\cos(y)y'=1.$$ Substitution back in $y=\mathrm{arcsin(z)}$ yields the formula $$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{\cos(\mathrm{arcsin(z)})} = \dfrac{1}{\sqrt{1-z^2}}. █ $$

Proposition: $$\int \mathrm{arcsin}(z) dz = \sqrt{1-z^2}+z\mathrm{arcsin}(z)+C$$

Proof:

Proposition: $$\mathrm{arcsin}(z) = \mathrm{arccsc}\left( \dfrac{1}{z} \right)$$

Proof:

Proposition: $$\mathrm{arcsin}(z)=\sum_{k=0}^{\infty} \dfrac{\left(\frac{1}{2} \right)_n}{(2n+1)n!}x^{2n+1}$$

Proof:

References