Difference between revisions of "Arcsin"
(→Properties) |
(→Properties) |
||
Line 7: | Line 7: | ||
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
<strong>Proposition:</strong> | <strong>Proposition:</strong> | ||
− | $$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{1-z^2}$$ | + | $$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{\sqrt{1-z^2}}$$ |
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> If $y=\mathrm{arcsin}(z)$ then $\sin(y)=z$. Now use [[implicit differentiation]] with respect to $z$ to get | <strong>Proof:</strong> If $y=\mathrm{arcsin}(z)$ then $\sin(y)=z$. Now use [[implicit differentiation]] with respect to $z$ to get |
Revision as of 01:48, 28 October 2014
The $\mathrm{arcsin}$ function is the inverse function of the sine function.
500px
Properties
Proposition: $$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{\sqrt{1-z^2}}$$
Proof: If $y=\mathrm{arcsin}(z)$ then $\sin(y)=z$. Now use implicit differentiation with respect to $z$ to get $$\cos(y)y'=1.$$ Substitution back in $y=\mathrm{arcsin(z)}$ yields the formula $$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{\cos(\mathrm{arcsin(z)})} = \dfrac{1}{\sqrt{1-z^2}}. █ $$
Proposition: $$\int \mathrm{arcsin}(z) dz = \sqrt{1-z^2}+z\mathrm{arcsin}(z)+C$$
Proof: █
Proposition: $$\mathrm{arcsin}(z) = \mathrm{arccsc}\left( \dfrac{1}{z} \right)$$
Proof: █
Proposition: $$\mathrm{arcsin}(z)=\sum_{k=0}^{\infty} \dfrac{\left(\frac{1}{2} \right)_n}{(2n+1)n!}x^{2n+1}$$
Proof: █