Difference between revisions of "Arctan"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The $\mathrm{arctan}$ function is the inverse function of the [[tangent]] function.<br />
 
The $\mathrm{arctan}$ function is the inverse function of the [[tangent]] function.<br />
  
[[File:Arctan.png|500px]]
+
<div align="center">
 +
<gallery>
 +
File:Arctan.png|Graph of $\mathrm{arctan}$ on $[-1,1]$.
 +
File:Complex arctan.jpg|[[Domain coloring]] of the [[analytic continuation]] of $\mathrm{arctan}$.
 +
</gallery>
 +
</div>
  
[[File:Complex arctan.jpg|500px]]
+
[[500px]]
 +
 
 +
[[500px]]
  
 
=Properties=
 
=Properties=

Revision as of 05:11, 31 October 2014

The $\mathrm{arctan}$ function is the inverse function of the tangent function.

500px

500px

Properties

Proposition: $$\dfrac{d}{dz} \mathrm{arctan}(z) = \dfrac{1}{z^2+1}$$

Proof: If $y=\mathrm{arctan}(z)$ then $\tan y = z$. Now use implicit differentiation with respect to $z$ yields $$\sec^2(y)y'=1.$$ Substituting back in $y=\mathrm{arccos(z)}$ yields the formula $$\dfrac{d}{dz} \mathrm{arccos(z)} = \dfrac{1}{\sec^2(\mathrm{arctan(z)})} = \dfrac{1}{z^2+1}. █$$

Proposition: $$\int \mathrm{arctan}(z) = z\mathrm{arctan}(z) - \dfrac{1}{2}\log(1+z^2)+C$$

Proof:

Proposition: $$\mathrm{arctan}(z) = \mathrm{arccot}\left( \dfrac{1}{z} \right)$$

Proof:

References

Weisstein, Eric W. "Inverse Tangent." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/InverseTangent.html