Difference between revisions of "Arctan"

From specialfunctionswiki
Jump to: navigation, search
Line 13: Line 13:
 
$$\dfrac{d}{dz} \mathrm{arctan}(z) = \dfrac{1}{z^2+1}$$
 
$$\dfrac{d}{dz} \mathrm{arctan}(z) = \dfrac{1}{z^2+1}$$
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
<strong>Proof:</strong> If $y=\mathrm{arctan}(z)$ then $\tan y = z$. Now use [[implicit differentiation]] with respect to $z$ yields
+
<strong>Proof:</strong> If $\theta=\mathrm{arctan}(z)$ then $\tan \theta = z$. Now use [[implicit differentiation]] with respect to $z$ yields
$$\sec^2(y)y'=1.$$
+
$$\sec^2(\theta)\theta'=1.$$
Substituting back in $y=\mathrm{arccos(z)}$ yields the formula
+
The following triangle shows that $\sec^2(\mathrm{arctan}(z))=z^2+1$:
 +
[[File:Sec(arctan(z)).png|200px|center]]
 +
Substituting back in $\theta=\mathrm{arccos(z)}$ yields the formula
 
$$\dfrac{d}{dz} \mathrm{arccos(z)} = \dfrac{1}{\sec^2(\mathrm{arctan(z)})} = \dfrac{1}{z^2+1}. █$$  
 
$$\dfrac{d}{dz} \mathrm{arccos(z)} = \dfrac{1}{\sec^2(\mathrm{arctan(z)})} = \dfrac{1}{z^2+1}. █$$  
 
</div>
 
</div>

Revision as of 05:39, 31 October 2014

The $\mathrm{arctan}$ function is the inverse function of the tangent function.

Properties

Proposition: $$\dfrac{d}{dz} \mathrm{arctan}(z) = \dfrac{1}{z^2+1}$$

Proof: If $\theta=\mathrm{arctan}(z)$ then $\tan \theta = z$. Now use implicit differentiation with respect to $z$ yields $$\sec^2(\theta)\theta'=1.$$ The following triangle shows that $\sec^2(\mathrm{arctan}(z))=z^2+1$:

Sec(arctan(z)).png

Substituting back in $\theta=\mathrm{arccos(z)}$ yields the formula $$\dfrac{d}{dz} \mathrm{arccos(z)} = \dfrac{1}{\sec^2(\mathrm{arctan(z)})} = \dfrac{1}{z^2+1}. █$$

Proposition: $$\int \mathrm{arctan}(z) = z\mathrm{arctan}(z) - \dfrac{1}{2}\log(1+z^2)+C$$

Proof:

Proposition: $$\mathrm{arctan}(z) = \mathrm{arccot}\left( \dfrac{1}{z} \right)$$

Proof:

References

Weisstein, Eric W. "Inverse Tangent." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/InverseTangent.html