Difference between revisions of "Sine"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The sine function $\sin \colon \mathbb{R} \rightarrow \mathbb{R}$ is the unique solution of the second order initial value problem $y''=-y;y(0)=0,y'(0)=1$.
 
The sine function $\sin \colon \mathbb{R} \rightarrow \mathbb{R}$ is the unique solution of the second order initial value problem $y''=-y;y(0)=0,y'(0)=1$.
  
[[File:Sine.png|500px]]
+
<div align="center">
 
+
<gallery>
[[File:Complex sin.jpg|500px]]
+
File:Sine.png|Graph of $\sin$ on $\mathbb{R}$.
 +
File:Complex sin.jpg|[[Domain coloring]] of [[analytic continuation]] of $\sin$.
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=

Revision as of 05:51, 31 October 2014

The sine function $\sin \colon \mathbb{R} \rightarrow \mathbb{R}$ is the unique solution of the second order initial value problem $y=-y;y(0)=0,y'(0)=1$.

Properties

Proposition: $\sin(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kx^{2k+1}}{(2k+1)!}$

Proof: proof goes here █

Proposition: $\sin(x) = x \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{x^2}{k^2\pi^2} \right)$

Proof: proof goes here █