Difference between revisions of "Error function"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
  
 
[[File:Erf.png|500px]]
 
[[File:Erf.png|500px]]
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> $\mathrm{erf}(z) = \dfrac{2}{\sqrt{\pi}} \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kz^{2n+1}}{n!(2n+1)}$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> $\mathrm{erf}(-z)=-\mathrm{erf}(z)$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> $\mathrm{erf}(\overline{z}) = \overline{\mathrm{erf}}(z)$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>

Revision as of 06:54, 31 October 2014

$$\mathrm{erf}(x)=\dfrac{2}{\sqrt{\pi}}\displaystyle\int_0^x e^{-\tau^2} d\tau$$

500px

Properties

Theorem: $\mathrm{erf}(z) = \dfrac{2}{\sqrt{\pi}} \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kz^{2n+1}}{n!(2n+1)}$

Proof:

Theorem: $\mathrm{erf}(-z)=-\mathrm{erf}(z)$

Proof:

Theorem: $\mathrm{erf}(\overline{z}) = \overline{\mathrm{erf}}(z)$

Proof: