Difference between revisions of "Hadamard gamma"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "=References= [http://www.luschny.de/math/factorial/hadamard/HadamardsGammaFunctionMJ.html Is the Gamma function misdefined?]")
 
Line 1: Line 1:
 +
The Hadamard gamma function is defined by the formula
 +
$$H(x)=\dfrac{1}{\Gamma(1-x)} \dfrac{d}{dx} \log \left( \dfrac{\Gamma(\frac{1}{2}-\frac{x}{2})}{\Gamma(1-\frac{x}{2})} \right),$$
 +
where $\Gamma$ denotes the [[gamma function]].
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> We can write
 +
$$H(x)=\dfrac{\psi(1-\frac{x}{2})-\psi(\frac{1}{2}-\frac{x}{2})}{2\Gamma(1-x)},$$
 +
where $\psi$ is the [[digamma function]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> proof goes here █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong>
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> proof goes here █
 +
</div>
 +
</div>
 
=References=
 
=References=
 
[http://www.luschny.de/math/factorial/hadamard/HadamardsGammaFunctionMJ.html Is the Gamma function misdefined?]
 
[http://www.luschny.de/math/factorial/hadamard/HadamardsGammaFunctionMJ.html Is the Gamma function misdefined?]

Revision as of 22:52, 13 January 2015

The Hadamard gamma function is defined by the formula $$H(x)=\dfrac{1}{\Gamma(1-x)} \dfrac{d}{dx} \log \left( \dfrac{\Gamma(\frac{1}{2}-\frac{x}{2})}{\Gamma(1-\frac{x}{2})} \right),$$ where $\Gamma$ denotes the gamma function.

Properties

Theorem: We can write $$H(x)=\dfrac{\psi(1-\frac{x}{2})-\psi(\frac{1}{2}-\frac{x}{2})}{2\Gamma(1-x)},$$ where $\psi$ is the digamma function.

Proof: proof goes here █

Theorem:

Proof: proof goes here █

References

Is the Gamma function misdefined?