Difference between revisions of "Hadamard gamma"
From specialfunctionswiki
Line 12: | Line 12: | ||
</div> | </div> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
=References= | =References= | ||
[http://www.luschny.de/math/factorial/hadamard/HadamardsGammaFunctionMJ.html Is the Gamma function misdefined?] | [http://www.luschny.de/math/factorial/hadamard/HadamardsGammaFunctionMJ.html Is the Gamma function misdefined?] |
Revision as of 22:52, 13 January 2015
The Hadamard gamma function is defined by the formula $$H(x)=\dfrac{1}{\Gamma(1-x)} \dfrac{d}{dx} \log \left( \dfrac{\Gamma(\frac{1}{2}-\frac{x}{2})}{\Gamma(1-\frac{x}{2})} \right),$$ where $\Gamma$ denotes the gamma function.
Properties
Theorem: We can write $$H(x)=\dfrac{\psi(1-\frac{x}{2})-\psi(\frac{1}{2}-\frac{x}{2})}{2\Gamma(1-x)},$$ where $\psi$ is the digamma function.
Proof: proof goes here █