Difference between revisions of "Laplace transform"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "Let $f \colon \mathbb{R} \rightarrow \mathbb{C}$ be a function, then the Laplace transform of $f$ is the function defined by $$\mathscr{L}\{f\}(z) = \displaystyle\int_0^{\inft...")
 
Line 1: Line 1:
 
Let $f \colon \mathbb{R} \rightarrow \mathbb{C}$ be a function, then the Laplace transform of $f$ is the function defined by
 
Let $f \colon \mathbb{R} \rightarrow \mathbb{C}$ be a function, then the Laplace transform of $f$ is the function defined by
 
$$\mathscr{L}\{f\}(z) = \displaystyle\int_0^{\infty} e^{-zt}f(t) dt.$$
 
$$\mathscr{L}\{f\}(z) = \displaystyle\int_0^{\infty} e^{-zt}f(t) dt.$$
 +
 +
=Videos=
 +
[https://www.youtube.com/watch?v=u3v6V7SXrl8 Laplace transform of power function with real exponent] <br />
 +
[https://www.youtube.com/watch?v=ca1LuQZRX6s Laplace transform of $\sin(\sqrt{t})$]

Revision as of 05:00, 19 January 2015

Let $f \colon \mathbb{R} \rightarrow \mathbb{C}$ be a function, then the Laplace transform of $f$ is the function defined by $$\mathscr{L}\{f\}(z) = \displaystyle\int_0^{\infty} e^{-zt}f(t) dt.$$

Videos

Laplace transform of power function with real exponent
Laplace transform of $\sin(\sqrt{t})$