Difference between revisions of "Riemann xi"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
The Riemann $\xi$ function is defined by the formula
+
The Riemann $\xi$ function (sometimes called the Riemann $\Xi$ function) is defined by the formula
 
$$\xi(z)=\dfrac{z}{2}(z-1)\pi^{-\frac{z}{2}}\Gamma\left(\dfrac{z}{2}\right)\zeta(z),$$
 
$$\xi(z)=\dfrac{z}{2}(z-1)\pi^{-\frac{z}{2}}\Gamma\left(\dfrac{z}{2}\right)\zeta(z),$$
 
where $\Gamma$ denotes the [[gamma function]] and $\zeta$ denotes the [[Riemann zeta function]].
 
where $\Gamma$ denotes the [[gamma function]] and $\zeta$ denotes the [[Riemann zeta function]].
  
 
[[File:Complex Riemann Xi.jpg|500px]]
 
[[File:Complex Riemann Xi.jpg|500px]]

Revision as of 17:34, 19 February 2015

The Riemann $\xi$ function (sometimes called the Riemann $\Xi$ function) is defined by the formula $$\xi(z)=\dfrac{z}{2}(z-1)\pi^{-\frac{z}{2}}\Gamma\left(\dfrac{z}{2}\right)\zeta(z),$$ where $\Gamma$ denotes the gamma function and $\zeta$ denotes the Riemann zeta function.

Complex Riemann Xi.jpg