Difference between revisions of "Jacobi sn"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
(Properties)
Line 6: Line 6:
 
#$\mathrm{sn \hspace{2pt}}(0)=0$
 
#$\mathrm{sn \hspace{2pt}}(0)=0$
 
#$m \mathrm{sn \hspace{2pt}}^2 u + \mathrm{dn \hspace{2pt}}^2u=1$
 
#$m \mathrm{sn \hspace{2pt}}^2 u + \mathrm{dn \hspace{2pt}}^2u=1$
 +
#$\mathrm{sn \hspace{2pt}}$ is an odd function

Revision as of 07:30, 10 March 2015

Let $u=\displaystyle\int_0^x \dfrac{1}{\sqrt{(1-t^2)(1-mt^2)}}dt = \displaystyle\int_0^{\phi} \dfrac{1}{\sqrt{1-m\sin^2 \theta}} d\theta.$ Then we define $$\mathrm{sn \hspace{2pt}}u = \sin \phi = x.$$

Properties

  1. $\mathrm{sn \hspace{2pt}}^2u+\mathrm{cn \hspace{2pt}}^2u=1$
  2. $\mathrm{sn \hspace{2pt}}(0)=0$
  3. $m \mathrm{sn \hspace{2pt}}^2 u + \mathrm{dn \hspace{2pt}}^2u=1$
  4. $\mathrm{sn \hspace{2pt}}$ is an odd function