Difference between revisions of "Sine"
From specialfunctionswiki
Line 22: | Line 22: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
+ | {{:Gamma-Sine_Relation}} | ||
=References= | =References= | ||
[http://ocw.mit.edu/courses/mathematics/18-104-seminar-in-analysis-applications-to-number-theory-fall-2006/projects/chan.pdf The sine product formula and the gamma function] | [http://ocw.mit.edu/courses/mathematics/18-104-seminar-in-analysis-applications-to-number-theory-fall-2006/projects/chan.pdf The sine product formula and the gamma function] |
Revision as of 04:16, 20 March 2015
The sine function $\sin \colon \mathbb{R} \rightarrow \mathbb{R}$ is the unique solution of the second order initial value problem $y=-y;y(0)=0,y'(0)=1$.
- Sine.png
Graph of $\sin$ on $\mathbb{R}$.
- Complex sin.jpg
Domain coloring of analytic continuation of $\sin$.
Properties
Proposition: $\sin(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kx^{2k+1}}{(2k+1)!}$
Proof: proof goes here █
Proposition: $\sin(x) = x \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{x^2}{k^2\pi^2} \right)$
Proof: proof goes here █
- REDIRECT Gamma(z)Gamma(1-z)=pi/sin(pi z)