Difference between revisions of "Cotangent"

From specialfunctionswiki
Jump to: navigation, search
Line 8: Line 8:
 
File:Complex Cot.jpg|[[Domain coloring]] of [[analytic continuation]] of $\cot$.
 
File:Complex Cot.jpg|[[Domain coloring]] of [[analytic continuation]] of $\cot$.
 
</gallery>
 
</gallery>
 +
</div>
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>[[Derivative of cotangent|Proposition]]:</strong> $\dfrac{d}{dx}$[[Cotangent|$\cot$]]$(x)=-$[[Cosecant|$\csc$]]$^2(x)$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 
</div>
 
</div>
  
 
<center>{{:Trigonometric functions footer}}</center>
 
<center>{{:Trigonometric functions footer}}</center>

Revision as of 05:22, 20 March 2015

The cotangent function is defined by the formula $$\cot(z)=\dfrac{1}{\tan z}=\dfrac{\cos(z)}{\sin(z)},$$ where $\tan$ denotes the tangent function.

Properties

Proposition: $\dfrac{d}{dx}$$\cot$$(x)=-$$\csc$$^2(x)$

Proof:

<center>Trigonometric functions
</center>