Difference between revisions of "Riemann zeta"

From specialfunctionswiki
Jump to: navigation, search
(External links)
(External links)
Line 38: Line 38:
 
*[https://www.youtube.com/watch?v=yhtcJPI6AtY The Riemann Hypothesis: How to make $1 Million Without Getting Out of Bed]
 
*[https://www.youtube.com/watch?v=yhtcJPI6AtY The Riemann Hypothesis: How to make $1 Million Without Getting Out of Bed]
 
*[http://empslocal.ex.ac.uk/people/staff/mrwatkin//zeta/riemannhyp.htm The Riemann Hypothesis: FAQ and resources]
 
*[http://empslocal.ex.ac.uk/people/staff/mrwatkin//zeta/riemannhyp.htm The Riemann Hypothesis: FAQ and resources]
 +
*[http://empslocal.ex.ac.uk/people/staff/mrwatkin//zeta/devlin.pdf How Euler discovered the zeta function]

Revision as of 00:12, 21 March 2015

Consider the function $\zeta$ defined by the series $$\zeta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{1}{n^z}.$$

Properties

Proposition: If $\mathrm{Re} \hspace{2pt} z > 1$, then the series defining $\zeta(z)$ converges.

Proof:

Proposition (Euler Product): $\zeta(z)=\displaystyle\sum_{n=1}^{\infty} \dfrac{1}{n^z} = \displaystyle\prod_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{1-p^{-z}}$

Proof:

Proposition: Let $n$ be a positive integer. Then $$\zeta(2n)=(-1)^{n+1}\dfrac{B_{2n}(2\pi)^{2n}}{2(2n)!},$$ where $B_n$ denotes the Bernoulli numbers.

Proof:

External links