Difference between revisions of "Beta in terms of gamma"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> The following formula holds: $$B(x,y)=\dfrac{\Ga...")
 
Line 2: Line 2:
 
<strong>[[Beta in terms of gamma|Theorem]]:</strong> The following formula holds:  
 
<strong>[[Beta in terms of gamma|Theorem]]:</strong> The following formula holds:  
 
$$B(x,y)=\dfrac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)},$$
 
$$B(x,y)=\dfrac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)},$$
where $B$ denotes the [[beta function]] and $\Gamma$ denotes the [[gamma function]].  
+
where $B$ denotes the [[beta]] and $\Gamma$ denotes the [[gamma function]].  
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 00:48, 21 March 2015

Theorem: The following formula holds: $$B(x,y)=\dfrac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)},$$ where $B$ denotes the beta and $\Gamma$ denotes the gamma function.

Proof: