Difference between revisions of "Beta in terms of gamma"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> The following formula holds: $$B(x,y)=\dfrac{\Ga...") |
|||
Line 2: | Line 2: | ||
<strong>[[Beta in terms of gamma|Theorem]]:</strong> The following formula holds: | <strong>[[Beta in terms of gamma|Theorem]]:</strong> The following formula holds: | ||
$$B(x,y)=\dfrac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)},$$ | $$B(x,y)=\dfrac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)},$$ | ||
− | where $B$ denotes the [[beta | + | where $B$ denotes the [[beta]] and $\Gamma$ denotes the [[gamma function]]. |
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 00:48, 21 March 2015
Theorem: The following formula holds: $$B(x,y)=\dfrac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)},$$ where $B$ denotes the beta and $\Gamma$ denotes the gamma function.
Proof: █