Difference between revisions of "Polylogarithm"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
$$\mathrm{Li}_s(z) = \sum_{k=1}^{\infty} \dfrac{z^k}{k^s} = z + \dfrac{z^2}{2^s} + \dfrac{z^3}{3^s} + \ldots$$
 
$$\mathrm{Li}_s(z) = \sum_{k=1}^{\infty} \dfrac{z^k}{k^s} = z + \dfrac{z^2}{2^s} + \dfrac{z^3}{3^s} + \ldots$$
  
[[File:Polylog.png|500px]]
+
<div align="center">
 +
<gallery>
 +
File:Polylog.png|Various polylogarithms plotted on $[-2,1]$.
 +
</gallery>
 +
</div>
 +
 
 +
=Properties=
 +
{{:Lerch transcendent polylogarithm}}

Revision as of 01:10, 21 March 2015

The polylogarithm $\mathrm{Li}_s$ is defined by the formula $$\mathrm{Li}_s(z) = \sum_{k=1}^{\infty} \dfrac{z^k}{k^s} = z + \dfrac{z^2}{2^s} + \dfrac{z^3}{3^s} + \ldots$$

Properties

Theorem

The following formula holds: $$\Phi(z,n,1)=\dfrac{\mathrm{Li}_n(z)}{z},$$ where $\Phi$ denotes the Lerch transcendent and $\mathrm{Li_n}$ denotes the polylogarithm.

Proof

References