Difference between revisions of "Bateman F"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
$$Z_n(x) = {}_2F_2(-n,n+1;1;1;x),$$
 
$$Z_n(x) = {}_2F_2(-n,n+1;1;1;x),$$
 
where ${}_2F_2$ is a [[generalized hypergeometric function]].
 
where ${}_2F_2$ is a [[generalized hypergeometric function]].
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$n^2(2n-3)Z_n(x)-(2n-1)[3n^2-6n+2-2(2n-3)x]Z_{n-1}(x)+(2n-3)[3n^2-6n+2+2(2n-1)x]Z_{n-2}(x)-(2n-1)(n-2)^2Z_{n-3}(x)=0.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$xZ_n'(x)-nZ_n(x)=-nZ_{n-1}(x)-xZ_{n-1}'(x).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$xZ_n'(x)-nZ_n(x)=-\displaystyle\sum_{k=0}^{n-1} Z_k(x) - 2x\displaystyle\sum_{k=0}^{n-1} Z_k'(x).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$xZ_n'(x)-nZ_n(x)=\displaystyle\sum_{k=0}^{n-1} (-1)^{n-k}(2k+1)Z_k(x).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$\dfrac{1}{1-t} {}_1F_1 \left( \dfrac{1}{2} ; 1 ; -\dfrac{4xt}{(1-t)^2} \right) = \displaystyle\sum_{k=0}^{\infty} Z_n(x)t^n,$$
 +
where ${}_1F_1$ denotes the [[generalized hypergeometric function]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
 +
=References=
 +
Rainville "Special Functions"
  
 
{{:Orthogonal polynomials footer}}
 
{{:Orthogonal polynomials footer}}

Revision as of 09:49, 23 March 2015

The Bateman polynomials are orthogonal polynomials defined by $$Z_n(x) = {}_2F_2(-n,n+1;1;1;x),$$ where ${}_2F_2$ is a generalized hypergeometric function.

Properties

Theorem: The following formula holds: $$n^2(2n-3)Z_n(x)-(2n-1)[3n^2-6n+2-2(2n-3)x]Z_{n-1}(x)+(2n-3)[3n^2-6n+2+2(2n-1)x]Z_{n-2}(x)-(2n-1)(n-2)^2Z_{n-3}(x)=0.$$

Proof:

Theorem: The following formula holds: $$xZ_n'(x)-nZ_n(x)=-nZ_{n-1}(x)-xZ_{n-1}'(x).$$

Proof:

Theorem: The following formula holds: $$xZ_n'(x)-nZ_n(x)=-\displaystyle\sum_{k=0}^{n-1} Z_k(x) - 2x\displaystyle\sum_{k=0}^{n-1} Z_k'(x).$$

Proof:

Theorem: The following formula holds: $$xZ_n'(x)-nZ_n(x)=\displaystyle\sum_{k=0}^{n-1} (-1)^{n-k}(2k+1)Z_k(x).$$

Proof:

Theorem: The following formula holds: $$\dfrac{1}{1-t} {}_1F_1 \left( \dfrac{1}{2} ; 1 ; -\dfrac{4xt}{(1-t)^2} \right) = \displaystyle\sum_{k=0}^{\infty} Z_n(x)t^n,$$ where ${}_1F_1$ denotes the generalized hypergeometric function.

Proof:


References

Rainville "Special Functions"

Orthogonal polynomials