Difference between revisions of "Chebyshev U"

From specialfunctionswiki
Jump to: navigation, search
Line 3: Line 3:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
{{:Chebychev differential equation}}
<strong>Theorem:</strong> The polynomials $T_n(x)$ and $U_n(x)$ are two independent solutions of the following equation, called Chebyshev's equation:
 
$$(1-x^2)\dfrac{d^2y}{dx^2}-x\dfrac{dy}{dx}+n^2y=0.$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">

Revision as of 10:38, 23 March 2015

The Chebyshev polynomials of the second kind are orthogonal polynomials defined by $$U_n(x) = \sin(n \mathrm{arcsin}(x)).$$

Properties

  1. REDIRECT Chebyshev differential equation

Theorem: The following formula holds: $$\int_{-1}^1 \dfrac{U_m(x)U_n(x)}{\sqrt{1-x^2}} dx = \left\{ \begin{array}{ll} 0 &; m \neq n \\ \dfrac{\pi}{2} &; m=n\neq 0\\ 0 &; m=n=0. \end{array} \right.$$

Proof:

Orthogonal polynomials