Difference between revisions of "Logarithmic integral"
From specialfunctionswiki
Line 4: | Line 4: | ||
$$\mathrm{li}(x)=\mathrm{Ei}( \log(x)).$$ | $$\mathrm{li}(x)=\mathrm{Ei}( \log(x)).$$ | ||
− | + | <div align="center"> | |
+ | <gallery> | ||
+ | File:Logarithmicintegral.png|Graph of $\mathrm{li}$ on $[0,6]$. | ||
+ | </gallery> |
Revision as of 23:14, 1 April 2015
The logarithmic integral is $$\mathrm{li}(x) = \displaystyle\int_0^x \dfrac{dt}{\log(t)},$$ where $\log$ denotes the logarithm. The logarithmic integral is related to the exponential integral by the formula $$\mathrm{li}(x)=\mathrm{Ei}( \log(x)).$$
- Logarithmicintegral.png
Graph of $\mathrm{li}$ on $[0,6]$.