Difference between revisions of "Logarithmic integral"

From specialfunctionswiki
Jump to: navigation, search
Line 4: Line 4:
 
$$\mathrm{li}(x)=\mathrm{Ei}( \log(x)).$$
 
$$\mathrm{li}(x)=\mathrm{Ei}( \log(x)).$$
  
[[File:Logarithmicintegral.png|500px]]
+
<div align="center">
 +
<gallery>
 +
File:Logarithmicintegral.png|Graph of $\mathrm{li}$ on $[0,6]$.
 +
</gallery>

Revision as of 23:14, 1 April 2015

The logarithmic integral is $$\mathrm{li}(x) = \displaystyle\int_0^x \dfrac{dt}{\log(t)},$$ where $\log$ denotes the logarithm. The logarithmic integral is related to the exponential integral by the formula $$\mathrm{li}(x)=\mathrm{Ei}( \log(x)).$$