Difference between revisions of "Q-Gamma"

From specialfunctionswiki
Jump to: navigation, search
m (Tom moved page Q-Gamma function to Q-Gamma)
Line 3: Line 3:
 
where $(\cdot;\cdot)_{\infty}$ denotes the [[q-Pochhammer symbol]]. The function $\Gamma_q$ is a [[q-analogue | $q$-analogue]] of the [[gamma function]].
 
where $(\cdot;\cdot)_{\infty}$ denotes the [[q-Pochhammer symbol]]. The function $\Gamma_q$ is a [[q-analogue | $q$-analogue]] of the [[gamma function]].
  
[[File:Qgamma.png|600px]]
+
<div align="center">
 +
<gallery>
 +
File:Qgamma.png|Graph of $\Gamma_q$ on $[-3,3]$.
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=

Revision as of 06:17, 5 April 2015

Let $0<q<1$. Define the $q$-gamma function by the formula $$\Gamma_q(x) = \dfrac{(q;q)_{\infty}}{(q^x;q)_{\infty}}(1-q)^{1-x},$$ where $(\cdot;\cdot)_{\infty}$ denotes the q-Pochhammer symbol. The function $\Gamma_q$ is a $q$-analogue of the gamma function.

Properties

Proposition: $\Gamma_q(n+1)=1(1+q)\ldots(1+q+\ldots+q^{n-1})$

Proof: proof goes here █

Proposition: $\Gamma_q(x+1)=\dfrac{1-q^x}{1-q}\Gamma_q(x)$

Proof: proof goes here █

Proposition: $\Gamma_q(1)=\Gamma_q(2)=1$

Proof: proof goes here █

Theorem ($q$-analog of Bohr-Mollerup): Let $f$ be a function which satisfies $$f(x+1) = \dfrac{1-q^x}{1-q}f(x)$$ for some $q \in (0,1)$, $$f(1)=1,$$ and $\log f(x)$ is convex for $x>0$. Then $f(x) = \Gamma_q(x)$.

Proof: proof goes here █

Theorem (Legendre Duplication Formula): $\Gamma_q(2x)\Gamma_{q^2}\left(\dfrac{1}{2}\right)=\Gamma_{q^2}(x)\Gamma_{q^2}\left( x +\dfrac{1}{2} \right)(1+q)^{2x+1}$

Proof: proof goes here █

References

Askey, Richard . The q-gamma and q-beta functions. Applicable Anal. 8 (1978/79), no. 2, 125--141.
DLMF entry on q-Gamma and q-Beta functions